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1 Scientific activity

The research during the first nine months of the ERCIM fellowship was focused on the development
of computationally efficient updating, downdating and up-downdating strategies for estimating and
evaluating the linear regression model. Specifically, the following problems have been considered:

e The computation of the least-squares solution of a regression model after deleting a block of
observations is investigated. The QR decomposition (QRD) is used as main computational
tool for re-calculating the downdated solution. Two parallel strategies for downdating the
QRD are considered. These are parallel versions of a recently proposed sequential algorithm
which efficiently exploits the triangular structure of the matrices and is rich in BLAS-3 oper-
ations [2]. Theoretical and experimental results for both strategies are derived and analyzed.
The performance of the first algorithm is found to degrade, because of the communication
costs which increases significantly with the number of processors. The second approach is
found to be efficient and scalable for large scale problems.

Furthermore, a modification of the second parallel algorithm which incorporates the explicit
computation of the orthogonal matrix during the computations is proposed. The modified
algorithm is analyzed and found to be also perfectly load-balanced, scalable for large scale
problems and with efficiency close to one.

Finally, an alternative approach for downdating the QRD, which is based on Hyperbolic
Householder transformations, is considered. The numerical results show that the serial
hyperbolic algorithm slightly outperforms the best sequential strategy proposed in [2]. How-
ever, the hyperbolic downdating is found to be numerically instable in general and thus,
less attractive than the standard approach. Currently, an efficient parallelization of the
hyperbolic strategy is under investigation. [4].

e A graph approach for optimizing the computation required in the k-fold cross-validation of
the regression model is proposed. The main advantage of this approach is that it avoids the
computation of all required (desired) models from scratch by efficiently utilizing previous
computations. The training (and testing) subsets are presented as nodes of a complete
weighted graph. The links between the nodes indicate the different possibilities for deriving
the solution of the destination node, given the solution of the source node. The weights
of the links represent the computational complexities required for updating, downdating
or up-downdating the corresponding data matrices. The graph with all possible links is
constructed and its properties investigated.

Several strategies for computing the k-fold cross-validation problem are discussed, where
each strategy generates different number of models. During the computations, the algo-
rithms traverse different paths of the complete graph and could estimate a number of new
additional models (nodes), which are not initially required. In such a way, the different
approaches provide different information about the evaluated problem. The advantages and
disadvantages of each strategy are discussed. Numerical results are presented and analyzed.
The problem of computing the optimal path (i.e the one with the minimum computational
complexity) in the graph which computes all (desired) nodes is addressed as well.
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In the context of detecting influential observations, the possibility of computing all 'close to
a specific node’ models is also discussed and numerical results are presented and analyzed.
Currently, the proposed methods are evaluated using real datasets. [3].

e A generalization of a branch and bound strategy using a directed graph approach with similar
properties is investigated for deriving all possible subset regression models. The graph is
found to have a recursive structure with useful properties which can be efficiently exploited.
A group of equivalent Minimum Spanning Trees (MSTs) is derived from the graph. The
trees are equivalent in the sense of having the same (minimum) computational complexity
for deriving all possible subset regression models. The sub-models are efficiently estimated
by computing the MST which comprise all variables of the sub-model. The various MSTs
yield different regression tree strategies for model selection. Each tree has specific structure
and characteristics.

The new graph branch and bound algorithm (GBBA) computes the best sub-models, without
generating all nodes of the graph, i.e. searching for the best sub-models it prunes the non-
optimal sub-graphs. Numerical results show small improvement of the GBBA over the
existing branch and bound algorithm based on a regression tree.

The generalization of the regression graph can be used in solving similar combinatorial
problems as the exhaustive k-fold cross-validation and outliers identification. [1].

The submitted results are shown in the Attachment (copies of papers).

2 Publication(s) during your fellowship

The article [1] has been recently submitted for publication in the Computational Statistics and
Data Analysis journal and is attatched in the Appendix. The other two articles [3] and [4], which
have been presented at the conferences mentioned below will be completed in the coming months
and submitted for publication to international journals.

3 Attended Seminars, Workshops, and Conferences

Conference presentations:

1. 7A Graph based strategy for the k-fold cross-validation problem”.
Presented at the 12th International conference on Computing in Economics and Finance,
Limassol, Cyprus, June 22-24, 2006.

2. 7Computational strategies for the k-fold cross-validation problem using a graph approach”.
Presented at the 8th Workshop of the ERCIM working group on Matrix Computations and
Statistics, Salerno, Italy, September 2-3, 2006.

3. 7Parallel algorithms for downdating the least squares estimator of the regression model”.
Presented at the 4th International Workshop on Parallel Matrix Algorithms and Applica-
tions, IRISA, Rennes, France, September 7-9, 2006.

Member of the scientific programme committee:

e 8th Workshop of the ERCIM working group on Matrix Computations and Statistics, Salerno,
Ttaly, September 2-3, 2006.
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A GRAPH APPROACH TO GENERATE ALL POSSIBLE REGRESSION SUBMODELS*

CRISTIAN GATU', PETKO YANEV#, AND ERRICOS JOHN KONTOGHIORGHES!

Abstract. A regression graph to enumerate and evaluate all possibesuvegression models is introduced. The graph is a
generalization of a regression tree. All the spanning toééke graph are minimum spanning trees and provide an optiomapu-
tational procedure for generating all possible submodeieh minimum spanning tree has a different structure andacteaistics.

An adaptation of a branch-and-bound algorithm which coepthe best-subset models using the regression graph faakew
proposed. Experimental results and comparison with atiegimethod based on a regression tree are presented ands#igc

Key words. Graphs; Regression trees; Model selection; Combinatalgarithms.

1. Introduction. An important topic in statistical modeling is the subsdeston regression or,
equivalently, finding the best regression equation [10,1P1,13, 19]. That is, given a list of possible
variables to be included in the regression, the problem select a subset of them which optimize some
statistical criterion. The latter derives from the estiimabf the corresponding sub-model [21, 22, 25, 26].
In the case of the standard regression model haviparameters there aré 2 1 possible submodels which
have to be compared. Another important area where subsetigtoekd to be specified is within the context
of estimating the parameters of a Vector AutoregressiveRMgrocess. AG-multivariate VAR process of
orderp yields %G _ 1 submodels [6]. When the number of parameters to chooseifrowt too large, it
is convenient to enumerate and evaluate all possible sudlfi2?, 27]. This approach has the advantage
of the exhaustive search based methods, that is to provédeptimum solution. Strategies for generating
all possible subset regression models have been previoaskidered. Within this context, a dropping
columns algorithm that generates a regression tree tagettiea parallel version of this algorithm have
been proposed [3, 5, 28]. The computation involved in thesthous are based on the QR factorization
and re-triangularization of a matrix after deleting colenrOne property of the regression tree is that
once a submodel comprising the variablesv,, ...,vq] is derived, the submodels corresponding to the
subsetgvi], [v1,V2],...,[v1,V2,...,Vq] become available without extra computational cost. Thebsets
correspond to the already triangular sub-leadingl12 x 2,...,d x d matrices [5, 7]. Thus, the problem
of generating all 2— 1 possible subset regression models becomes to generaggthesion tree having
as root node the full specified mod#|2,...,n).

Recently, an algorithm for computing the main matrix faiations arising in the estimation of seem-
ingly unrelated regression equation models with commoralites has been introduced [29]. This can be
seen as equivalent to estimating a set of sub-models hagimghon variables. The algorithm is based on
weighted directed graphs. The nodes corresponds to madssdf variables) and an edge exists between
two nodes if the destination node is subset of the source.ndtie weight of an edge is given by the
computational complexity of estimating the sub-model & tfestination given that the source has been
already estimated. Thus, the sub-models are efficientimattd by computing the shortest path from the
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root node which comprise all variables of the model to thesiregl nodes.

A regression graph which yields all possible subset regressodels is introduced. The graph can be
seen as a generalization of the regression tree in [5, 6 p&cifically, the regression tree describes a non-
unique shortest path for traversing the graph. Furthernadiréhe subtrees of the graph containing all the
nodes are equivalentin the sense that they provide all sotaskels with the same minimum computational
complexity.

The next section introduces a class of regression graphshvdain be employed in statistical model
selection. It describes how the combinatorial problem aofreerating all possible subset regression models
can be formalized with directed graphs. Theoretical messaf complexity of generating all models by
traversing a regression graph are presented. Section 3shewelationship between the regression graphs
and the regression trees. That is, how the various minimwanrspg (regression) trees can be obtained
from the regression graph. The merits of the derived regrnessees are discussed. Section 4 presents the
generalization of a branch-and-bound algorithm for conmguthe best-subset regression models using the
graph structure. Finally, Section 5 concludes.

2. Regression graphs. Consider the standard regression model
y=AB+g, &~ (0,06°),

whereA € R™" comprises the variables (columng). .., vn. Itis assumed thah > n, A has full rank and
the QR decomposition (QRD) &fis given by:

(R
QA= <0>. (1)

HereQ € R™ ™M is orthogonal andk € R™*" is upper-triangular. LeA) comprising the first variables,
i.e.vi,...,vi, andR() denotes the leadinigx i triangular sub-matrix oR such that

| 0\ |
QTA<'>_<RO>' Ci=1..n
m-—I

The least squares solution of thevariable regression modgk= AR + ¢ is computed by® = ROBM,

i=1,...,n, where
TOAW
T [V

Thus, the QRD (1) provides the least squares solutiomsafb-models. Generally(2 — 1 submodels
out of the 2 — 1 possible ones are derived trivially in this way. Thus, tamaining 2"~ non-trivial
sub-models which can be generated from the setafriablesV = [vi,...,vn] need to be computed. This
includes the full modelvy, ..., vy and excludes all the sub-models which are immediately @vigilfrom
the leading triangular sub-matrices [5, 7].

The 2"1 sub-models are given by(V,0), andN(V, k) is defined recursively as
. o

N(V.K) — {V} - | !f k>n-—1,

{V}U(Uj:k NV —[vj:a],j)) if k<n—1,

where 0< k < n. The corresponding triangular sub-matrices can be reptedeas nodes of a weighted
directed regression graph. A node in the graph is a set okexthat corresponds to the variables (columns)
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of the original sef1,2,...,n] included inV; and is denoted by; = [V},V,...,V], wherei = 1,..., 20"
and 1< j < n. An edge between two nod¥sandV; is denoted byE; ;. It exists and is directed froiv
towardsvj ifand only ifV; C Vi (i,j =1, ..., 2= andi # j). Formally, this directed graph will be denoted
by gv and defined by the tuple

x =N(V,0),

u ={E;=M,V):V,V; € x andV; C Vi}.

Figure 1 shows the grapfy forV =[1,2,3,4).

Gv =(x,u) with {

FIG. 1. The graphgy forV =[1,2,3,4].

The weight off; j is denoted byC; j and is proportional to the complexity of estimating the sabdel
corresponding t¥; given that the one corresponding\phas already been estimated. Recall that this is
equivalent to the re-triangularization of an upper-trialag matrix after deleting some columns|[5, 7, 9, 17,
29]. Letk=|Vj|,V; = [V:{, é,...,vﬂ(], the edge; j from some nod¥; towardsVj exist andp;; denote the
position of thevtj inV; (t=1,...,k). Note that, sinc&j C V,, pit >t for everyt. Then, the weight of the
edgeC j is given by

k

Gij :t;(pi,t—t)(k—“rl)- (@)

This corresponds to the computational cost of the construeind application on 2-row sub-matrices of
a sequence of Givens rotations in order to annihilate thezaoa elements below the main diagonal of
the sub-matrix corresponding ¥ [7, 29]. Figure 2 shows this sequence of Givens rotations/fet
[1,2,3,4,5,6] andV; = [1,2,4,5,6]. That is, when variable 3 has been deleted. Figure 3(a) stimsts
Ci,; corresponding to all the edgé&s; of the complete graplgy, while Figure 3(b) shows all the nodes
which are non-trivial subsets ¥fforV = [1,2, 3,4]. The computational costs of deriving these nodes from
V are also shown as the weights of the edges.

Now, using this graph representation, the problem of geimgrall 2"~ non-trivial sub-sets 0§ =
[1,2,...,n], i.e. sub-matrices, becomes equivalent to visiting tfle’2 nodes of the grapg s . The
edges and weights afj; _ provide all the possibilities and the associate cost of mpfriom one node to
another by deleting variables. Finally, in order to derive triangular factors of all nodes with minimum
cost, the optimal path for visiting all the nodes is requirékhis is equivalent to finding one or more
minimum spanning trees (MST) of the proposed weighted thegraph [18, 23].

The nodes of;y = (x, @) with |V| = n can be divided intm levelsLy,...,Ln, such thaly contains
all nodes having exactlyvariables, i.e.

Lk={W:WexandW|=k}, k=1,..n
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initial matrix 1st rotation 2nd rotation 3rd rotation
XXX XX XXX XX XIX XXX X X X
XXX X XX XX XXX X XXX X
XXX]| cost=3 XXX cost=2 XXX cost= XXX
XXX —— NOXX| ——— <XX —_— XX
XX XX | N0X X
X X X O

D Zero element Non-zero element @ Annihilated element

FIG. 2. Re-triangularization of an x n upper triangular matrix after deleting the ith column ugiGivens rotations, where
n=6andi=3.
VY, 234 [134) [124] 34 [24 14 [4]
(1,2,3,4] 6 3 1 6 4 2 3
[2,3,4] - - - 3 1 1
(1,3,4] - - - 3 - 1 2
(1,2,4] - - - - 3 1 2
[ 1
[ 1

1234

6 3 1

3,4] - - - - - -

2,4 - - - - - -

(1,4 - - - - - -1
(a) The cost&; j corresponding to the edg&sj = (V;,V;) of the com-(b) The non-trivial nodes d¥; and the corresponding
plete graphgy forV =[1,2,3,4]. weight edges fo¥; = [1,2,3,4].

(234) (134) (124)

Fi1G. 3. The computational cost associated with the edges,of

Note that,Ln = {[1,...,n]} andLy = {[n]}. Now, letVs € Lp, Vi € Lq and\} € L,, whereEs; andEp;
exist, andp > g > r. If there is a path fronvs to Vi, thenCp < Cs; [29]. Therefore, the edgés; can be
deleted from the graph. Note that, a path frggito V, exists if and only if the set of variable indexes of
V;, is a subset of the set of variable indexe&/af Figure 4(a) illustrates this “edges-deletion-rule” wéner
Vs=1[1,2,3,4, p=4,Vh=1[1,4], =2,V = [4] andr = 1. The concerned edges are in bold and the
deleted one is in dashed. The cGsf andCs; are also shown. Following this rule, the gragh can be
simplified by removing all the edges between non-adjacestde This graph denoted by, derives from

Gv = (x,u), and is given by

X -the same nodes ag;,

Ny =(x,g) with
E = {Ei,j = (Vi,Vj) . Ei,j cu and|\/i|— |Vj| = 1}.

Figure 4(b) illustrates the gragh, with all possible edges that exist between adjacent le¥etsy =
[1,2,3,4,5].

After computing the cost§; j for all remaining edges, which are only between adjacergl$gthe
number of edges ifiy can be further reduced. For each node, the incoming edgemiitimum weight
is chosen and remains in the graph, while all other incomiiges are deleted. If there is more than
one incoming edge with minimum weight, then all of them arptk&his second “edges-deletion-rule” is
illustrated in Figure 5(a) for the incoming edges of the n{#}d], where the retained and deleted edges
are denoted by bold and dashed arcs, respectively. Letatisced graph be denoted By. Figure 5(b)
illustrates the graphy after deleting the unnecessary edgesMet [1,...,n] andn = 5. The (minima)
weights of the edges are also displayed. Each spanningftfaetmas the same total cost of visiting all the
nodes which is equal to the sum of the weights of all its edgéss total sum is optimal (minimum) and
thus, each spanning treelof is a MST.
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Ls

L4
L3
L2
L1
(&) The non-adjacent levels “edges-deletion-rule” Ygr= (b) The grapHy, forV =[1,2,3,4,5] (32 edges).
(1,234, p=4,Vh=[1,4], =2Vt = [4 andr = 1.
FiG. 4. The reduction of edges between non-adjacent levels.
Ls
La Ls
L3 134 Ls
’
’
‘I
Lo L
L1 Ly

(&) The non-minimum weight “edges-deletion-rule” for the (b) The graphrly together with the minima weight of the
node|2,4]. edges, foV = [1,2,3,4,5] (26 edges).

F1G. 5. The reduction of the non-minimum weight incoming edges.

Independent of these "edges-deletion-rules”, the redgcaghly can be constructed recursively. Let
V| =1,i.e.V =|v]. Inthis casely = y. This is the graph having only one node corresponding to the
set[v], and has no edges. Assume, now, fhat= (x,Z) has been defined for some 8et= [vy, ..., V]
and a new variabler is added td/. The definition of" .y is required, wherev-V = [w, vy, ..., vp). Let

. ~ X ={w-Vi:Viex
Twy = (X,£) with X ={wiiviex), _ _
' £ ={Ej=WV,wVj):Eij=(MVj)ez}

The weight ofE; j is the same as that & ;. Furthermore, the graphg, andFWN have the same size
and structure. The only difference is that the nodes reptelfferent subsets (models) since the nodes of
Fw,v are obtained by adding to the nodes oFy. Both graphs$y andﬂw are shown in Figure 6(a) and
Figure 6(b), respectively, for = [2,3,4,5] andw = 1. Notice that the variable exists only inFW,V but
notinTy. In Figure 6(a) the graph has been stretched by prolongmgdiges and the recursive subgraphs

345 andF27[3)4)5} have been framed in order to illustrate its recursive débimit
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La

L3

Lo

\
N6
~

L .
Tt Ty forV =1(2,3,4,5. (b) Fwy forw=1andV = [2,3,4,5].

FIG. 6. The recursive structure of the reduced grdph

Now, givenly andfwv, the grapH w. is defined as

Fwv = (X,E) with

X =xXUX, 3)

£ =EUE U{Ej = ((WVi,Vit1,---,Vn, [Vi,Vi41,---,Vn]) i =1,...,n}.

The weightC; j« of the added edges of forf j+ that connect the two subgraphg andfwv is given by
Cij- =i(i+1)/2. This completes the recursive definitionlaf. From the recursive definition in (3) and
the computation of the weight of the added edBgs (i = 1,...,n) in (2) it follows that each graphy.y
can be constructed once the smaller griplis derived. Figure 7 shows an example of the greph, for
w=1andV = [2,3,4,5,6]. The two subgraphBy andFWN are well distinguished at the left and right of
the illustration, respectively. The weights of the new esidpat connects them are shown.

Ls
12345

15

Ls

Lg

L3

Lo

L1

Hence, the recursive weighted directed graphis optimal in the sense that all its spanning trees are
MST and provide an optimal computational procedure (i.enimim computational cost) for deriving all
possible sub-models.

3. MSTsand Regression trees. The MSTSs derived fronfry differ in their structure. Thus, some of
them exhibit properties and characteristics that could beersuitable for specific problems such as parallel
strategies for deriving all subset models, branch-andiieelection and subrange model derivation [5, 7,
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15]. Consider the MST of 5, denoted byTs of Figure 8(b). This tree is of particular interest because i
keeps the recursive structure of the graph. That is, it caetérsively constructed independentlylaf
This regression tredy, has been investigated and its properties thoroughly é@rplavithin the context of
model selection in [7]. A parallel algorithm for computinig@ossible subset regression models using this
regression tree has also been proposed [5].

Ls 1234 Ls

1245](1235) L4
-7 - 1
2 /
7/

125 Ls

Lg

L3

L2 |—2

L1

(@) The graphy, forV =[1,2,3,4,5]. (b) The regression treB;.
FiG. 8. The MST {derived fronTy, for V =[1,...,n], and n= 5.

Another MST ofl,, denoted byT*, which can be of particular interest is presented in Figuhg,9
wheren = 5. Note that, the cost of generatifig is the same as for that of generatifig However, T,
has more balanced structure in the sense that the cost afagieigehe left subtrees with root nodd45
and[1345 is the same as the cost of generating the right subtrees @atmpdeg2345 and[1235. This
property allowsT: to be computed by two processors using a complete loadtlisn [16]. I.e., two
processors can compute the in half the time needed for computing the whole tree by a sipgbcessor.

Ls Ls

()

L3

-

2 L2

L1

(@) The grapity, forV =[1,2,3,4,5]. (b) The regression tregy, forn=>5.

FIG. 9. The MST [T derived fromly, for V =[1,...,n], and n=5.

4. Branch-and-bound strategy for model selection. A branch-and-bound algorithm (BBA) for com-
puting the best-subset regression models together witheitsistic counterpart have recently been de-
veloped [7, 15]. Here, a generalization of these strategssg the regression graghy is proposed
(GBBA) [2, 4, 20, 24]. Specifically, the pruning procedursdgbed in detail in [7, 15] can be enhanced
by using the edges of the graph. Thus, when the cutting téd$ hibe right-hand side subtrees (subgraphs)
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are cut, but also some subgraphs from the left-hand sideeafréph.

This is illustrated in Figure 10 fan = 6. Specifically, using the regression tree approach (BB#9, t
node([16] is tested against the bound nold@458. If the test holds, then the whole subtree having as
root [13458 is cut. Now, using the graph structure (GBBA), in particulee edgg[13456,[345§), the
subgraph having as root the no@56 can be also pruned, except of the nodes on the leftmost path —
[3458, 456, [56], [6] — that contain sub-models of size one[3}[4], [5],[6]. The latter nodes need to be
tested before pruning. The reduced search space is depidtaglre 10(b). The special nodes that require

additional testing are shown in rectangular frames.

> !
(139

/m

(a) The regression graph for 6-variable initial list. (b) The reduced search.
O Computed @ Bound node @ Testnode (J To be investigated [] Requiring additional testing

FiG. 10.Branch-and-bound strategy based on directed regressiapls.

The details of the GBBA procedure are shown in Algorithm 1 ef\swith k passive variables which
are kept in the subsequent generated subgraphs is denotbd pgir{V,k}. These pairs represent the
nodes of the graph and are stored in thellifiased on the first in - first out” principle. In the beginning
the root node of the graph is placed in the listThat is, the initial full set of variables. The number of
passive variables is set to 0, i.e. all variables are catelitabe dropped. During the execution of the
algorithm a pair{V,k} is extracted from the list and the leadiGly | — k) new submodels are obtained.
The remaining leading submodels have been already generated at ther stalies of the algorithm. In
subsequent steps the children of the node are generated/areelsubject to that the branch-and-bound
cutting test fails. A variable from the first set in the lisis flagged for the deletion when a subgraph is
pruned. In the above example the variable 2 of the rjad458 is flagged. This allows to cut directly the
subgraph with root3456 when processing the nod23458.

The performance of BBA was significantly improved by sortthg variables in the initial list, prior
the execution of the algorithm [7]. The same strategy hars bém applied on the GBBA. These versions
are denoted by BBA-1 and GBBA-1, respectively. The algoritihave been implemented in C++ with
BLAS and LAPACK using GNU compiler collection on Pentium g$amachines with 512 MB of RAM,
running under Linux. The datasets employed in the expeltsnieave been constructed using randomly
generated data from a uniform distribution. Table 1 showsetkecution times in seconds and the number
of generated nodes of BBA, GBBA, BBA-1 and GBBA-1. All metsatte exhaustive and generate the
(same) best sub-models.

As in the case of the BBA, it can be observed that preordehirgviriables considerably improves
the performance of GBBA. The graph approach performs $jigigtter when compared with the classical
approach based on regression trees. In fact, it can be ptbaethe two algorithms are equivalent. That
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Algorithm 1 The Graph Branch-and-Bound algorithm for finding the begtsset models
1: proceduregbbal/;oo)

2:  insert{Viot, 0} in the listL [List L uses the "first in — first out” principlg
3. whileL# & do

4: extract{V, k} from the listL, wheren= |V|andV = [v,Vv2,...,Vy).

5: obtain the leading submoddis, ..., Vii1], -+, [V1,- .-, Vki1,- - -, Vn)

6: if n—k < 1then

7: if RSQV) > pk+1 then

8: if L # < then

9: extract{W, p} from the listL

10: flag the variablen,,, 1w, —n for deletion; inser{W, u} in the listL
11: end if

12: else

13: if variablevy ; is flagged for deletiothen

14: WV

15: repeat

16: W «— dropW,k+ 1)

17: obtain the leading submoddis, ..., Wi1], ..., [W1,. .., Wii1,. . ,W‘W‘]
18: i — W|-k

19: if RS$W) > py1 then
20: i—1 [Terminate the repeat-until iteratidn
21 if L# < then
22: extract{U, p} from the listL
23: flag the variableup, 1, y—w, for deletion; inser{fU, p} in the listL
24: end if
25: end if
26: untili=1
27: elseinsert{drop(V,k+ 1),k} in the listL
28: end if
29: remove flags from the variableg, 1, ...,v,
30: for j=k+2,....n—1do
3L if RS§V) > pj then j —n eseinsert{dropV,j),j—1} inthelistL end if
32: end for
33: end if
34: end if

35.  end while
36: end procedure

is, any left-hand side subgraph pruned by the GBBA, is al$doguhe BBA. The improvement observed
by GBBA against the BBA is due to the fact that the former desiadditional nodes in earlier stages
(the rectangular nodes in Figure10(b)) and, thus, proveteebbounds when investigating the remaining
subgraphs.
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TABLE 1
Execution times in seconds and number of generated nodédsef@BA and GBBA without and with preordering.

BBA GBBA BBA-1 GBBA-1
n time nodes time nodes time  nodes time  nodes
20 0.09 16'126 0.08 15911 0.01 758 0.01 722
25 0.88 136'811 0.86 136'798 0.04 4’150 0.04 4091
30 8.13 1'036’134 7.73 1'024'216 0.16 14’669 0.16 14’308
35 62.88 7171837 59.58 6'913'952 0.22 18387 0.22 17984
40 345.74  31'209'257 327.73 30'767'331 5.09 369109 5.056'383
45 8229.82 739'626'349 7981.01 727'498'653 7.49 537369 357.526'652

5. Conclusions. A directed graph approach which can be employed in statistitodel selection
has been proposed. Specifically, the combinatorial proldegenerating all possible subset regression
models has been formalized with the regression graph. Emusnerating all subsets becomes equivalent
to traversing all nodes of the graph. Theoretical measuresraplexity of generating all submodels by
traversing the regression graph have been presented. dperpies of the graph have been investigated and
exploited in order to significantly reduce the number of edddne resulting graph has a recursive structure
and it is optimal in the sense that all of its spanning treesMinimum Spanning Trees (MST) which
provide an optimal computational procedure for generagihgossible subset models. The MSTs yield
different regression tree strategies for model selecti@th tree has different structure and characteristics.

A generalization of a branch-and-bound algorithm for cotimguthe best-subset models using the
regression graph structure (GBBA) has been proposed. Hoeithim avoids to generate all nodes of the
graph when searching for the best submodels by pruning ptimal subgraphs. Experiments have shown
a small improvement of the GBBA over the existing Branch-&udind Algorithm based on a regression
tree [7].

The above model selection algorithms can be modified to déal Viector Autoregressive subset
model selection [5, 6, 8]. The regression graph provideaméwork that can be extended to solve similar
combinatorial problems such &gold cross validation and identification of influential datin this case,
the node indices represent observations, rather tharblesigl, 14].
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