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1 Scientific activity

The research during the first nine months of the ERCIM fellowship was focused on the development
of computationally efficient updating, downdating and up-downdating strategies for estimating and
evaluating the linear regression model. Specifically, the following problems have been considered:

• The computation of the least-squares solution of a regression model after deleting a block of
observations is investigated. The QR decomposition (QRD) is used as main computational
tool for re-calculating the downdated solution. Two parallel strategies for downdating the
QRD are considered. These are parallel versions of a recently proposed sequential algorithm
which efficiently exploits the triangular structure of the matrices and is rich in BLAS-3 oper-
ations [2]. Theoretical and experimental results for both strategies are derived and analyzed.
The performance of the first algorithm is found to degrade, because of the communication
costs which increases significantly with the number of processors. The second approach is
found to be efficient and scalable for large scale problems.

Furthermore, a modification of the second parallel algorithm which incorporates the explicit
computation of the orthogonal matrix during the computations is proposed. The modified
algorithm is analyzed and found to be also perfectly load-balanced, scalable for large scale
problems and with efficiency close to one.

Finally, an alternative approach for downdating the QRD, which is based on Hyperbolic
Householder transformations, is considered. The numerical results show that the serial
hyperbolic algorithm slightly outperforms the best sequential strategy proposed in [2]. How-
ever, the hyperbolic downdating is found to be numerically instable in general and thus,
less attractive than the standard approach. Currently, an efficient parallelization of the
hyperbolic strategy is under investigation. [4].

• A graph approach for optimizing the computation required in the k-fold cross-validation of
the regression model is proposed. The main advantage of this approach is that it avoids the
computation of all required (desired) models from scratch by efficiently utilizing previous
computations. The training (and testing) subsets are presented as nodes of a complete
weighted graph. The links between the nodes indicate the different possibilities for deriving
the solution of the destination node, given the solution of the source node. The weights
of the links represent the computational complexities required for updating, downdating
or up-downdating the corresponding data matrices. The graph with all possible links is
constructed and its properties investigated.

Several strategies for computing the k-fold cross-validation problem are discussed, where
each strategy generates different number of models. During the computations, the algo-
rithms traverse different paths of the complete graph and could estimate a number of new
additional models (nodes), which are not initially required. In such a way, the different
approaches provide different information about the evaluated problem. The advantages and
disadvantages of each strategy are discussed. Numerical results are presented and analyzed.
The problem of computing the optimal path (i.e the one with the minimum computational
complexity) in the graph which computes all (desired) nodes is addressed as well.
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In the context of detecting influential observations, the possibility of computing all ’close to
a specific node’ models is also discussed and numerical results are presented and analyzed.
Currently, the proposed methods are evaluated using real datasets. [3].

• A generalization of a branch and bound strategy using a directed graph approach with similar
properties is investigated for deriving all possible subset regression models. The graph is
found to have a recursive structure with useful properties which can be efficiently exploited.
A group of equivalent Minimum Spanning Trees (MSTs) is derived from the graph. The
trees are equivalent in the sense of having the same (minimum) computational complexity
for deriving all possible subset regression models. The sub-models are efficiently estimated
by computing the MST which comprise all variables of the sub-model. The various MSTs
yield different regression tree strategies for model selection. Each tree has specific structure
and characteristics.

The new graph branch and bound algorithm (GBBA) computes the best sub-models, without
generating all nodes of the graph, i.e. searching for the best sub-models it prunes the non-
optimal sub-graphs. Numerical results show small improvement of the GBBA over the
existing branch and bound algorithm based on a regression tree.

The generalization of the regression graph can be used in solving similar combinatorial
problems as the exhaustive k-fold cross-validation and outliers identification. [1].

The submitted results are shown in the Attachment (copies of papers).

2 Publication(s) during your fellowship

The article [1] has been recently submitted for publication in the Computational Statistics and

Data Analysis journal and is attatched in the Appendix. The other two articles [3] and [4], which
have been presented at the conferences mentioned below will be completed in the coming months
and submitted for publication to international journals.

3 Attended Seminars, Workshops, and Conferences

Conference presentations:

1. ”A Graph based strategy for the k-fold cross-validation problem”.
Presented at the 12th International conference on Computing in Economics and Finance,
Limassol, Cyprus, June 22-24, 2006.

2. ”Computational strategies for the k-fold cross-validation problem using a graph approach”.
Presented at the 8th Workshop of the ERCIM working group on Matrix Computations and
Statistics, Salerno, Italy, September 2-3, 2006.

3. ”Parallel algorithms for downdating the least squares estimator of the regression model”.
Presented at the 4th International Workshop on Parallel Matrix Algorithms and Applica-
tions, IRISA, Rennes, France, September 7-9, 2006.

Member of the scientific programme committee:

• 8th Workshop of the ERCIM working group on Matrix Computations and Statistics, Salerno,
Italy, September 2-3, 2006.
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A GRAPH APPROACH TO GENERATE ALL POSSIBLE REGRESSION SUBMODELS ∗

CRISTIAN GATU†, PETKO YANEV‡, AND ERRICOS JOHN KONTOGHIORGHES§ ¶

Abstract. A regression graph to enumerate and evaluate all possible subset regression models is introduced. The graph is a

generalization of a regression tree. All the spanning treesof the graph are minimum spanning trees and provide an optimal compu-

tational procedure for generating all possible submodels.Each minimum spanning tree has a different structure and characteristics.

An adaptation of a branch-and-bound algorithm which computes the best-subset models using the regression graph framework is

proposed. Experimental results and comparison with an existing method based on a regression tree are presented and discussed.

Key words. Graphs; Regression trees; Model selection; Combinatorialalgorithms.

1. Introduction. An important topic in statistical modeling is the subset-selection regression or,

equivalently, finding the best regression equation [10, 11,12, 13, 19]. That is, given a list of possible

variables to be included in the regression, the problem is toselect a subset of them which optimize some

statistical criterion. The latter derives from the estimation of the corresponding sub-model [21, 22, 25, 26].

In the case of the standard regression model havingn parameters there are 2n−1 possible submodels which

have to be compared. Another important area where subset models need to be specified is within the context

of estimating the parameters of a Vector Autoregressive (VAR) process. AG-multivariate VAR process of

orderp yields 2pG2
−1 submodels [6]. When the number of parameters to choose fromis not too large, it

is convenient to enumerate and evaluate all possible submodels [22, 27]. This approach has the advantage

of the exhaustive search based methods, that is to provide the optimum solution. Strategies for generating

all possible subset regression models have been previouslyconsidered. Within this context, a dropping

columns algorithm that generates a regression tree together with a parallel version of this algorithm have

been proposed [3, 5, 28]. The computation involved in these methods are based on the QR factorization

and re-triangularization of a matrix after deleting columns. One property of the regression tree is that

once a submodel comprising the variables[v1,v2, . . . ,vd] is derived, the submodels corresponding to the

subsets[v1], [v1,v2], . . . , [v1,v2, . . . ,vd] become available without extra computational cost. These subsets

correspond to the already triangular sub-leading 1×1,2×2, . . . ,d×d matrices [5, 7]. Thus, the problem

of generating all 2n−1 possible subset regression models becomes to generate theregression tree having

as root node the full specified model[1,2, . . . ,n].

Recently, an algorithm for computing the main matrix factorizations arising in the estimation of seem-

ingly unrelated regression equation models with common variables has been introduced [29]. This can be

seen as equivalent to estimating a set of sub-models having common variables. The algorithm is based on

weighted directed graphs. The nodes corresponds to models (sets of variables) and an edge exists between

two nodes if the destination node is subset of the source node. The weight of an edge is given by the

computational complexity of estimating the sub-model of the destination given that the source has been

already estimated. Thus, the sub-models are efficiently estimated by computing the shortest path from the
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root node which comprise all variables of the model to the required nodes.

A regression graph which yields all possible subset regression models is introduced. The graph can be

seen as a generalization of the regression tree in [5, 6, 7]. Specifically, the regression tree describes a non-

unique shortest path for traversing the graph. Furthermore, all the subtrees of the graph containing all the

nodes are equivalent in the sense that they provide all subset models with the same minimum computational

complexity.

The next section introduces a class of regression graphs which can be employed in statistical model

selection. It describes how the combinatorial problem of enumerating all possible subset regression models

can be formalized with directed graphs. Theoretical measures of complexity of generating all models by

traversing a regression graph are presented. Section 3 shows the relationship between the regression graphs

and the regression trees. That is, how the various minimum spanning (regression) trees can be obtained

from the regression graph. The merits of the derived regression trees are discussed. Section 4 presents the

generalization of a branch-and-bound algorithm for computing the best-subset regression models using the

graph structure. Finally, Section 5 concludes.

2. Regression graphs. Consider the standard regression model

y = Aβ + ε, ε∼ (0,σ2I),

whereA∈R
m×n comprises the variables (columns)v1, . . . ,vn. It is assumed thatm> n, A has full rank and

the QR decomposition (QRD) ofA is given by:

QTA =

(
R

0

)
. (1)

HereQ∈ R
m×m is orthogonal andR∈ R

n×n is upper-triangular. LetA(i) comprising the firsti variables,

i.e. v1, . . . ,vi , andR(i) denotes the leadingi× i triangular sub-matrix ofRsuch that

QTA(i) =

(
R(i)

0

)
i

m− i
, i = 1, . . . ,n.

The least squares solution of thei–variable regression modely = A(i)β(i) + ε is computed by ˆy(i) = R(i)β(i),

i = 1, . . . ,n, where

QTy =

(
ŷ(i)

ỹ(i)

)
i

m− i
.

Thus, the QRD (1) provides the least squares solution ofn sub-models. Generally, 2(n−1)−1 submodels

out of the 2n− 1 possible ones are derived trivially in this way. Thus, the remaining 2(n−1) non-trivial

sub-models which can be generated from the set ofn variablesV = [v1, . . . ,vn] need to be computed. This

includes the full model[v1, . . . ,vn] and excludes all the sub-models which are immediately available from

the leading triangular sub-matrices [5, 7].

The 2(n−1) sub-models are given byN(V,0), andN(V,k) is defined recursively as

N(V,k) =

{
{V} if k≥ n−1,

{V}∪
(
Sn−2

j=k N(V− [v j+1], j)
)

if k < n−1,

where 0≤ k < n. The corresponding triangular sub-matrices can be represented as nodes of a weighted

directed regression graph. A node in the graph is a set of indexes that corresponds to the variables (columns)
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of the original set[1,2, . . . ,n] included inVi and is denoted byVi = [vi
1,v

i
2, ...,v

i
j ], wherei = 1, ...,2(n−1)

and 1≤ j ≤ n. An edge between two nodesVi andVj is denoted byEi, j . It exists and is directed fromVi

towardsVj if and only ifVj ⊂Vi (i, j = 1, ...,2(n−1) andi 6= j). Formally, this directed graph will be denoted

by GV and defined by the tuple

GV = (X ,U ) with

{
X = N(V,0),

U = {Ei, j = (Vi,Vj) : Vi ,Vj ∈ X andVj ⊂Vi}.

Figure 1 shows the graphGV for V = [1,2,3,4].

1234
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34 24 14

4

FIG. 1. The graphGV for V = [1,2,3,4].

The weight ofEi, j is denoted byCi, j and is proportional to the complexity of estimating the sub-model

corresponding toVj given that the one corresponding toVi has already been estimated. Recall that this is

equivalent to the re-triangularization of an upper-triangular matrix after deleting some columns [5, 7, 9, 17,

29]. Letk = |Vj |, Vj = [v j
1,v

j
2, ...,v

j
k], the edgeEi, j from some nodeVi towardsVj exist andpi,t denote the

position of thev j
t in Vi (t = 1, ...,k). Note that, sinceVj ⊂Vi , pi,t ≥ t for everyt. Then, the weight of the

edgeCi, j is given by

Ci, j =
k

∑
t=1

(pi,t − t)(k− t +1). (2)

This corresponds to the computational cost of the construction and application on 2-row sub-matrices of

a sequence of Givens rotations in order to annihilate the non-zero elements below the main diagonal of

the sub-matrix corresponding toVj [7, 29]. Figure 2 shows this sequence of Givens rotations forVi =

[1,2,3,4,5,6] andVj = [1,2,4,5,6]. That is, when variable 3 has been deleted. Figure 3(a) showsthe costs

Ci, j corresponding to all the edgesEi, j of the complete graphGV , while Figure 3(b) shows all the nodes

which are non-trivial subsets ofV for V = [1,2,3,4]. The computational costs of deriving these nodes from

V are also shown as the weights of the edges.

Now, using this graph representation, the problem of generating all 2(n−1) non-trivial sub-sets ofV =

[1,2, ...,n], i.e. sub-matrices, becomes equivalent to visiting the 2(n−1) nodes of the graphG [1,...,n]. The

edges and weights ofG [1,...,n] provide all the possibilities and the associate cost of moving from one node to

another by deleting variables. Finally, in order to derive the triangular factors of all nodes with minimum

cost, the optimal path for visiting all the nodes is required. This is equivalent to finding one or more

minimum spanning trees (MST) of the proposed weighted directed graph [18, 23].

The nodes ofGV = (X ,U ) with |V| = n can be divided inton levelsL1, ...,Ln, such thatLk contains

all nodes having exactlyk variables, i.e.

Lk = {W : W ∈ X and|W|= k}, k = 1, ...,n.
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FIG. 2. Re-triangularization of an n× n upper triangular matrix after deleting the ith column using Givens rotations, where

n = 6 and i= 3.

Vi\Vj [2,3,4] [1,3,4] [1,2,4] [3,4] [2,4] [1,4] [4]

[1,2,3,4] 6 3 1 6 4 2 3

[2,3,4] - - - 3 1 - 1

[1,3,4] - - - 3 - 1 2

[1,2,4] - - - - 3 1 2

[3,4] - - - - - - 1

[2,4] - - - - - - 1

[1,4] - - - - - - 1

(a) The costsCi, j corresponding to the edgesEi, j = (Vi ,Vj ) of the com-

plete graphGV for V = [1,2,3,4].
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(b) The non-trivial nodes ofVi and the corresponding

weight edges forVi = [1,2,3,4].

FIG. 3. The computational cost associated with the edges ofGV .

Note that,Ln = {[1, . . . ,n]} andL1 = {[n]}. Now, letVs ∈ Lp, Vh ∈ Lq andVt ∈ Lr , whereEs,t andEh,t

exist, andp > q > r. If there is a path fromVs to Vh, thenCh,t ≤Cs,t [29]. Therefore, the edgeEs,t can be

deleted from the graph. Note that, a path fromVs to Vh exists if and only if the set of variable indexes of

Vh is a subset of the set of variable indexes ofVs. Figure 4(a) illustrates this “edges-deletion-rule” where

Vs = [1,2,3,4], p = 4, Vh = [1,4], q = 2, Vt = [4] and r = 1. The concerned edges are in bold and the

deleted one is in dashed. The costCh,t andCs,t are also shown. Following this rule, the graphGV can be

simplified by removing all the edges between non-adjacent levels. This graph denoted byΓV derives from

GV = (X ,U ), and is given by

ΓV = (X ,E ) with

{
X - the same nodes asGV ,

E = {Ei, j = (Vi ,Vj) : Ei, j ∈ U and|Vi|− |Vj |= 1}.

Figure 4(b) illustrates the graphΓV with all possible edges that exist between adjacent levels,for V =

[1,2,3,4,5].

After computing the costsCi, j for all remaining edges, which are only between adjacent levels, the

number of edges inΓV can be further reduced. For each node, the incoming edge withminimum weight

is chosen and remains in the graph, while all other incoming edges are deleted. If there is more than

one incoming edge with minimum weight, then all of them are kept. This second “edges-deletion-rule” is

illustrated in Figure 5(a) for the incoming edges of the node[2,4], where the retained and deleted edges

are denoted by bold and dashed arcs, respectively. Let this reduced graph be denoted byΓV . Figure 5(b)

illustrates the graphΓV after deleting the unnecessary edges, forV = [1, . . . ,n] andn = 5. The (minima)

weights of the edges are also displayed. Each spanning tree of ΓV has the same total cost of visiting all the

nodes which is equal to the sum of the weights of all its edges.This total sum is optimal (minimum) and

thus, each spanning tree ofΓV is a MST.
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(a) The non-adjacent levels “edges-deletion-rule” forVs =

[1,2,3,4], p = 4,Vh = [1,4], q = 2,Vt = [4] andr = 1.
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(b) The graphΓV , for V = [1,2,3,4,5] (32 edges).

FIG. 4. The reduction of edges between non-adjacent levels.
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(a) The non-minimum weight “edges-deletion-rule” for the

node[2,4].
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(b) The graphΓV together with the minima weight of the

edges, forV = [1,2,3,4,5] (26 edges).

FIG. 5. The reduction of the non-minimum weight incoming edges.

Independent of these ”edges-deletion-rules”, the reducedgraphΓV can be constructed recursively. Let

|V| = 1, i.e. V = [v]. In this case,ΓV ≡ ΓV . This is the graph having only one node corresponding to the

set[v], and has no edges. Assume, now, thatΓV = (X ,E ) has been defined for some setV = [v1, . . . ,vn]

and a new variablew is added toV. The definition ofΓw·V is required, wherew ·V ≡ [w,v1, . . . ,vn]. Let

Γ̂w,V = (X̂ , Ê ) with

{
X̂ = {w ·Vi : Vi ∈ X },

Ê = {Êi, j = (w ·Vi,w ·Vj) : Ei, j = (Vi ,Vj) ∈ E }.

The weight ofÊi, j is the same as that ofEi, j . Furthermore, the graphsΓV and Γ̂w,V have the same size

and structure. The only difference is that the nodes represent different subsets (models) since the nodes of

Γ̂w,V are obtained by addingw to the nodes ofΓV . Both graphsΓV andΓ̂w,V are shown in Figure 6(a) and

Figure 6(b), respectively, forV = [2,3,4,5] andw = 1. Notice that the variablew exists only inΓ̂w,V but

not inΓV . In Figure 6(a) the graph has been stretched by prolonging the edges and the recursive subgraphs

Γ[3,4,5] andΓ̂2,[3,4,5] have been framed in order to illustrate its recursive definition.
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5

(a) ΓV for V = [2,3,4,5].
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(b) Γ̂w,V for w = 1 andV = [2,3,4,5].

FIG. 6. The recursive structure of the reduced graphΓV .

Now, givenΓV andΓ̂w,V , the graphΓw·V is defined as

Γw·V = (X ,E ) with
{
X = X ∪ X̂ ,

E = E ∪ Ê ∪{Ei,i∗ = ([w,vi ,vi+1, . . . ,vn], [vi ,vi+1, . . . ,vn]) : i = 1, . . . ,n}.
(3)

The weightCi,i∗ of the added edges of formEi,i∗ that connect the two subgraphsΓV andΓ̂w,V is given by

Ci,i∗ = i(i + 1)/2. This completes the recursive definition ofΓV . From the recursive definition in (3) and

the computation of the weight of the added edgesEi,i∗ (i = 1, ...,n) in (2) it follows that each graphΓw·V

can be constructed once the smaller graphΓV is derived. Figure 7 shows an example of the graphΓw·V , for

w = 1 andV = [2,3,4,5,6]. The two subgraphsΓV andΓ̂w,V are well distinguished at the left and right of

the illustration, respectively. The weights of the new edges that connects them are shown.

L1

L2

L3

L4

L5

L6
123456

23456 13456 12456 12356 12346

3456 2456 2356 2346 1456 1356 1346 1256 1246 1236

456 356 346 256 246 236 156 146 136 126

56 46 36 26 16

6

15

10

6

3

1

FIG. 7. The graphΓV with the weights of the connecting edges, for V= [1,2,3,4,5,6].

Hence, the recursive weighted directed graphΓV is optimal in the sense that all its spanning trees are

MST and provide an optimal computational procedure (i.e. minimum computational cost) for deriving all

possible sub-models.

3. MSTs and Regression trees. The MSTs derived fromΓV differ in their structure. Thus, some of

them exhibit properties and characteristics that could be more suitable for specific problems such as parallel

strategies for deriving all subset models, branch-and-bound selection and subrange model derivation [5, 7,
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15]. Consider the MST ofΓ5, denoted byT5 of Figure 8(b). This tree is of particular interest because it

keeps the recursive structure of the graph. That is, it can berecursively constructed independently ofΓ5.

This regression tree,Tn, has been investigated and its properties thoroughly exploited within the context of

model selection in [7]. A parallel algorithm for computing all possible subset regression models using this

regression tree has also been proposed [5].
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L5 12345

2345 1345 1245 1235

345 245 235 145 135 125

45 35 25 15

5

10 6 3 1

6 3 1 6 3 1 3 1 1

3 1 3 1 1 3 1 1 1

1 1 1 1

(a) The graphΓV , for V = [1,2,3,4,5].
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L4

L512345

2345 1345 1245 1235

345 245 235 145 135 125

45 35 25 15

5

10 6 3 1

6 3 1 3 1 1

3 1 1 1

1

(b) The regression treeT5.

FIG. 8. The MST Tn derived fromΓV , for V = [1, . . . ,n], and n= 5.

Another MST ofΓn, denoted byT∗n , which can be of particular interest is presented in Figure 9(b),

wheren = 5. Note that, the cost of generatingT∗n is the same as for that of generatingTn. However,T∗n
has more balanced structure in the sense that the cost of generating the left subtrees with root nodes[1245]

and[1345] is the same as the cost of generating the right subtrees with root nodes[2345] and[1235]. This

property allowsT∗5 to be computed by two processors using a complete load distribution [16]. I.e., two

processors can compute theT∗5 in half the time needed for computing the whole tree by a single processor.
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(a) The graphΓV , for V = [1,2,3,4,5].
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L512345
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35 15 45 25

5

10 6 3 1
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1 1 3 1

1

(b) The regression treeT∗n , for n= 5.

FIG. 9. The MST T∗n derived fromΓV , for V = [1, . . . ,n], and n= 5.

4. Branch-and-bound strategy for model selection. A branch-and-boundalgorithm (BBA) for com-

puting the best-subset regression models together with itsheuristic counterpart have recently been de-

veloped [7, 15]. Here, a generalization of these strategiesusing the regression graphΓV is proposed

(GBBA) [2, 4, 20, 24]. Specifically, the pruning procedure described in detail in [7, 15] can be enhanced

by using the edges of the graph. Thus, when the cutting test holds, the right-hand side subtrees (subgraphs)
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are cut, but also some subgraphs from the left-hand side of the graph.

This is illustrated in Figure 10 forn = 6. Specifically, using the regression tree approach (BBA), the

node[16] is tested against the bound node[13456]. If the test holds, then the whole subtree having as

root [13456] is cut. Now, using the graph structure (GBBA), in particularthe edge([13456], [3456]), the

subgraph having as root the node[3456] can be also pruned, except of the nodes on the leftmost path —

[3456], [456], [56], [6] — that contain sub-models of size one —[3], [4], [5], [6]. The latter nodes need to be

tested before pruning. The reduced search space is depictedin Figure 10(b). The special nodes that require

additional testing are shown in rectangular frames.
123456

23456 13456 12456 12356 12346

3456 2456 2356 2346 1456 1356 1346 1256 1246 1236

456 356 346 256 246 236 156 146 136 126

56 46 36 26 16

6

(a) The regression graph for 6-variable initial list.

123456

23456 13456 12456 12356 12346

3456 2456 2356 2346 1256 1246 1236

456 256 246 236 126

56 26

6

(b) The reduced search.

Computed Bound node Test node To be investigated Requiring additional testing

FIG. 10.Branch-and-bound strategy based on directed regression graphs.

The details of the GBBA procedure are shown in Algorithm 1. A setV with k passive variables which

are kept in the subsequent generated subgraphs is denoted bythe pair{V,k}. These pairs represent the

nodes of the graph and are stored in the listL based on the ”first in - first out” principle. In the beginning

the root node of the graph is placed in the listL. That is, the initial full set of variables. The number of

passive variables is set to 0, i.e. all variables are candidate to be dropped. During the execution of the

algorithm a pair{V,k} is extracted from the list and the leading(|V| − k) new submodels are obtained.

The remainingk leading submodels have been already generated at the earlier stages of the algorithm. In

subsequent steps the children of the node are generated one by one subject to that the branch-and-bound

cutting test fails. A variable from the first set in the listL is flagged for the deletion when a subgraph is

pruned. In the above example the variable 2 of the node[23456] is flagged. This allows to cut directly the

subgraph with root[3456] when processing the node[23456].

The performance of BBA was significantly improved by sortingthe variables in the initial list, prior

the execution of the algorithm [7]. The same strategy has been also applied on the GBBA. These versions

are denoted by BBA–1 and GBBA–1, respectively. The algorithms have been implemented in C++ with

BLAS and LAPACK using GNU compiler collection on Pentium class machines with 512 MB of RAM,

running under Linux. The datasets employed in the experiments have been constructed using randomly

generated data from a uniform distribution. Table 1 shows the execution times in seconds and the number

of generated nodes of BBA, GBBA, BBA–1 and GBBA–1. All methods are exhaustive and generate the

(same) best sub-models.

As in the case of the BBA, it can be observed that preordering the variables considerably improves

the performance of GBBA. The graph approach performs slightly better when compared with the classical

approach based on regression trees. In fact, it can be provedthat the two algorithms are equivalent. That
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Algorithm 1 The Graph Branch-and-Bound algorithm for finding the best-subset models
1: procedure gbba(Vroot)

2: insert{Vroot,0} in the listL [List L uses the ”first in – first out” principle]

3: while L 6= ∅ do

4: extract{V,k} from the listL, wheren = |V| andV = [v1,v2, . . . ,vn].

5: obtain the leading submodels[v1, . . . ,vk+1], . . ., [v1, . . . ,vk+1, . . . ,vn]

6: if n−k< 1 then

7: if RSS(V) > ρk+1 then

8: if L 6= ∅ then

9: extract{W,µ} from the listL

10: flag the variablewµ+1+|W|−n for deletion; insert{W,µ} in the listL

11: end if

12: else

13: if variablevk+1 is flagged for deletionthen

14: W←V

15: repeat

16: W← drop(W,k+1)

17: obtain the leading submodels[w1, . . . ,wk+1], . . ., [w1, . . . ,wk+1, . . . ,w|W|]

18: i← |W|−k

19: if RSS(W) > ρk+1 then

20: i← 1 [Terminate the repeat-until iteration]

21: if L 6= ∅ then

22: extract{U, p} from the listL

23: flag the variableup+1+|U|−|W| for deletion; insert{U, p} in the listL

24: end if

25: end if

26: until i = 1

27: else insert{drop(V,k+1),k} in the listL

28: end if

29: remove flags from the variablesvk+1, . . . ,vn

30: for j = k+2, . . . ,n−1 do

31: if RSS(V) > ρ j then j ← n else insert{drop(V, j), j−1} in the listL end if

32: end for

33: end if

34: end if

35: end while

36: end procedure

is, any left-hand side subgraph pruned by the GBBA, is also cut by the BBA. The improvement observed

by GBBA against the BBA is due to the fact that the former derives additional nodes in earlier stages

(the rectangular nodes in Figure10(b)) and, thus, provide better bounds when investigating the remaining

subgraphs.
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TABLE 1

Execution times in seconds and number of generated nodes forthe BBA and GBBA without and with preordering.

BBA GBBA BBA-1 GBBA-1

n time nodes time nodes time nodes time nodes

20 0.09 16’126 0.08 15’911 0.01 758 0.01 722

25 0.88 136’811 0.86 136’798 0.04 4’150 0.04 4’091

30 8.13 1’036’134 7.73 1’024’216 0.16 14’669 0.16 14’308

35 62.88 7’171’837 59.58 6’913’952 0.22 18’387 0.22 17’984

40 345.74 31’209’257 327.73 30’767’331 5.09 369’109 5.05 356’783

45 8229.82 739’626’349 7981.01 727’498’653 7.49 537’369 7.35 526’652

5. Conclusions. A directed graph approach which can be employed in statistical model selection

has been proposed. Specifically, the combinatorial problemof generating all possible subset regression

models has been formalized with the regression graph. Thus,enumerating all subsets becomes equivalent

to traversing all nodes of the graph. Theoretical measures of complexity of generating all submodels by

traversing the regression graph have been presented. The properties of the graph have been investigated and

exploited in order to significantly reduce the number of edges. The resulting graph has a recursive structure

and it is optimal in the sense that all of its spanning trees are Minimum Spanning Trees (MST) which

provide an optimal computational procedure for generatingall possible subset models. The MSTs yield

different regression tree strategies for model selection.Each tree has different structure and characteristics.

A generalization of a branch-and-bound algorithm for computing the best-subset models using the

regression graph structure (GBBA) has been proposed. The algorithm avoids to generate all nodes of the

graph when searching for the best submodels by pruning non-optimal subgraphs. Experiments have shown

a small improvement of the GBBA over the existing Branch-and-Bound Algorithm based on a regression

tree [7].

The above model selection algorithms can be modified to deal with Vector Autoregressive subset

model selection [5, 6, 8]. The regression graph provides a framework that can be extended to solve similar

combinatorial problems such ask-fold cross validation and identification of influential data. In this case,

the node indices represent observations, rather than variables [1, 14].
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