
Page 1 sur 5 
 

 
 

ERCIM “Alain Bensoussan” 
Fellowship Scientific Report 

 
 
 

Fellow: Aliaksandr Lazovik  
Visited Location : CWI (NL), INRIA (FR) 
Duration of Visit: 01/04/2007 – 30/09/2008 
 
 
 

 
I - Scientific activity  
(1 page at maximum) 

 My scientific activities mainly consist of two directions: (i) service composition and related 
issues, especially in the context of coordination Reo language (CWI part), and (ii) service monitoring 
and diagnosability, optimal observability w.r.t. diagnosability and system repair (INRIA part).  
 In CWI I was working with coordination language Reo, and its application to service 
composition. My primary task here was to consider the possibility of applying Reo language to 
coordination of services, and to guide the implementation of supporting tools and framework (together 
with a couple of recently applied PhD students, partially under my guidance). The tools have been 
implemented as a set of Eclipse plug-ins [8]. Personally, I consider Reo as a language that has a 
number of very interesting and promising ideas, that other process languages lack. For example, Reo is 
a  declarative language, that is, each channel may represent not only actual control or data flow, but 
also an arbitrary constraint between two execution nodes. Thus, we encoded the Reo channels as pure 
constraint satisfaction problem and used a java-based constraint solver to implement the Reo execution 
engine [3]. Another nice feature is compositionality of the language, that allows easily introduce new 
domain-specific channels and connectors or re-use previously defined process definitions as a part of a 
new process [7]. The need for dynamic reconfiguration results in a set of algorithms for customization 
of Reo model on the fly [9].  
 As for my second hosting institute (INRIA), I was working at the diagnosability and issues of 
services and their corresponding theoretical models. The diagnosability property recognizes if a system 
model can be unambiguously diagnosable; that is, if all faults can be detected using only the 
information given by the observable events. Usually, large and complex systems require an automatic 
fault detection and isolation, but to specify the minimal observability degree of a system to be 
diagnosable is not a trivial task. During my stay at INRIA we found the necessary and sufficient 
conditions for observability (the list of observable events) that a system has to maintain to be 
diagnosable. We concentrated on two problems: first, we transformed a diagnosable system into one 
with minimal degree of observability and still diagnosable. Second, we transformed a non-diagnosable 
system into diagnosable by increasing the degree of observability. We also expanded the developed 
algorithms with several extensions: for distinguishability, for predictability and for extended fault 
models [2, 4]. 
 Additionally to the above mentioned research directions, I also studied the application of mash-
up techniques to enterprise service computing [1, 5], as well as the issues of business process 
customization [6].  
 
 

 
 



Page 2 sur 5 
 

II- Publication(s) during your fellowship  
 
Please insert the title(s), author(s) and abstract(s) of the published paper(s). You may also 
mention the paper(s) which were prepared during your fellowship period and are under 
reviewing.  

2008 

1. Z. Maraikar, A. Lazovik. Building Mashups for the Enterprise with SABRE. Int. Conf on 
Service-Oriented Computing (ICSOC-08), 2008.  

Abstract: The explosive popularity of mashups has given rise to a plethora of web-based tools 
for rapidly building mashups with minimal programming effort. In turn, this has spurred 
interest in using these tools to empower end-users to build situational applications for business. 
Situational applications based on Reo (SABRE) is a service composition platform that 
addresses service heterogeneity as a first-class concern by adopting a mashup’s data-centric 
approach. Built atop the Reo coordination language, SABRE provides tools to combine, filter 
and transform web services and data sources like RSS and ATOM feeds. Whereas other 
mashup platforms intermingle data transformation logic and I/O concerns, we aim to clearly 
separate them by formalising coordination logic within a mashup. Reo’s well-defined 
compositional semantics opens up the possibility of constructing a mashup’s core logic from a 
library of pre-built connectors. Input/output in SABRE is handled by service stubs generated by 
combining a syntactic service specification such as WSDL with a constraint automaton 
specifying service behavior. These stubs insulate services from misbehaving clients while 
protecting clients against services that do not conform to their contracts. We believe these are 
compelling features as mashups graduate from curiosities on the Web to situational applications 
for the enterprise. 

2. L. Brandan-Briones, A. Lazovik, and P. Dague. Optimal observability for diagnosability. 
International Workshop on Principles of Diagnosis (DX-08), 2008. 

Abstract: The diagnosability property recognizes if a system model can be unambiguously 
diagnosable; that is, if all faults can be detected using only the information given by the 
observable events. Usually, large and complex systems require an automatic fault detection and 
isolation, but to specify the minimal observability degree of a system to be diagnosable is not a 
trivial task.  

In this paper we give the necessary and sufficient conditions for observability (the list of 
observable events) that a system has to maintain to be diagnosable. We concentrate on two 
problems: first, we transform a diagnosable system into one with minimal degree of 
observability and still diagnosable. Second, we transform a non-diagnosable system into 
diagnosable by increasing the degree of observability. We also expand the developed 
algorithms with several extensions: for distinguishability, for predictability and for extended 
fault models. 

3. D. Clarke, J. Proenca, A. Lazovik, and F. Arbab. Deconstructing Reo. Int. Workshop on the 
Foundations of Coordination Languages and Software Architectures (FOCLASA-08), 2008. 

Abstract: Coordination in Reo emerges from the composition of the behavioural constraints of 
the primitives, such as channels, in a component connector. Understanding and implementing 
Reo, however, has been challenging due to interaction of the channel metaphor, which is an 
inherently local notion, and the non-local nature of constraint propagation imposed by 
composition. In this paper, the channel metaphor takes a back seat, and we focus on the 
behavioural constraints imposed by the composition of primitives, and phrase the semantics of 
Reo as a constraint satisfaction problem. Not only does this provide a clear intensional 
description of the behaviour of Reo connectors in terms of synchronisation and data flow 



Page 3 sur 5 
 

constraints, it also paves the way for new implementation techniques based on constraint 
propagation and satisfaction. In fact, decomposing Reo into constraints provides a new 
computational model for connectors, which we extend to model interaction with an unknown 
external world beyond what is currently possible in Reo 
 

4. L. Brandan-Briones, A. Lazovik, and P. Dague. Optimizing the system observability level for 
diagnosability. Int. Symposium on Leveraging Applications of Formal Methods, Verification 
and Validation (ISoLA-08), 2008. 

Abstract: The diagnosability property recognizes if a system model can be unambiguously 
diagnosable; that is, if all faults can be detected using only the information given by the 
observable events. Usually, large and complex systems require an automatic fault detection and 
isolation, but to specify the minimal observability degree of a system to be diagnosable is not a 
trivial task. In this paper we give the necessary and sufficient conditions for observability (the 
list of observable events) that a system has to maintain to be diagnosable. We concentrate on 
two problems: first, we transform a diagnosable system into one with minimal degree of 
observability and still diagnosable. Second, we transform a non-diagnosable system into 
diagnosable by increasing the degree of observability. We also expand the developed 
algorithms with several extensions: for distinguishability, for predictability and for extended 
fault models. 

 
5. Z. Maraikar and A. Lazovik. ReforMing Mashups. Young Researchers Workshop on Service-

Oriented Computing (YRSOC-08), 2008.  

Abstract: The explosive popularity of mashups has given rise to a plethora of ``mashup 
platforms''. Using these web-based tools, mashups can be rapidly constructed with minimal 
programming effort. Reo for Mashups (ReforM) is a service composition platform that 
addresses service heterogeneity as a first-class concern, by adopting a mashup's data-centric 
approach. Built atop the Reo coordination language, ReforM provides tools to combine, filter 
and transform  web services and data sources like RSS and ATOM feeds. Whereas other 
mashup platforms intermingle data transformation logic and I/O concerns, we aim to clearly 
separate them by formalising the coordination within a mashup. Reo's well-defined 
compositional semantics opens up the possibility of constructing a mashup's core from a library 
of prebuilt connectors. We believe these are compelling features as mashups graduate from 
curiosities on the Web to situational applications for the enterprise. 

2007 

6. A. Lazovik and H. Ludwig. Managing Process Customizability and Customization: Model, 
Language and Process. In Int. Conf. on Web Information Systems Engineering (WISE-07), 
2007. 
Abstract: One of the fundamental ideas of services and service oriented architecture is the 
possibility to develop new applications by composing existing services into business processes. 
However, only little effort has been devoted so far to the problem of maintenance and 
customization of already composed processes. In the context of global service delivery, where 
process is delivered to clients, it is critical to have a possibility to customize the standardized 
reference process for each particular customer. Having a standardized delivery process yields 
many benefits: interchangeable delivery teams, enabling 24/7 operations, labor cost arbitrage, 
specialization of delivery teams, making knowledge shared between all customers, optimization 
of standardized processes by re-engineering and automation. In the paper we propose an 
approach, where reference process models are used explicitly in the process lifecycle, where 
customer-specific process instantiations are obtained by a series of customization steps over 
reference processes. To show the feasibility of the approach, we developed a process-
independent language to express different customization options for the reference business 



Page 4 sur 5 
 

processes. We also provided an implementation that extends WebSphere BPEL4WS Editor to 
introduce process customizations to BPEL4WS processes. 

 
7. A. Lazovik and F. Arbab. Using Reo for Service Coordination. In Int. Conf. on Service-

Oriented Computing (ICSOC-07), LNCS 4749, pages 392--397, Springer, 2007. 
 Abstract: In this paper we address coordination of services in complex business processes. As 
 the main coordination mechanism we rely on a channel-based exogenous coordination 
 language, called Reo, and investigate its application to service-oriented architectures. Reo 
 supports a specific notion of composition that enables coordinated composition of individual 
 services, as well as complex composite business processes. Accordingly, a coordinated business 
 process consists of a set of web services whose collective behavior is coordinated by a Reo 
 expression. 

 In this approach, it is easy to maintain a loosely coupled environment with services knowing 
 nothing about each other. Although it is claimed that BPEL-like languages maintain service 
 independence, in practice they hard-wire services through the connections that they specify in 
 the process itself. In contrast, Reo allows us to concentrate only on important protocol decisions 
 and define only those restrictions that actually form the domain knowledge, leaving more 
 freedom for process specification and choice of individual services compared to traditional 
 approaches. 
 

8. C. Koehler, A. Lazovik, and F. Arbab. ReoService: Coordination Modeling Tool. In Int. Conf. 
on Service-Oriented Computing (ICSOC-07), LNCS 4749, pages 625--626, Springer, 2007.  

 Abstract:  Coordination in SOA addresses dynamic topologies of interactions among services. 
 Most efforts up to now have been focused on statically defined composition of services, e.g., 
 using BPEL. To the best of our knowledge, there are no serious means to address the issues of 
 dynamic coordination to accommodate continuously changing requirements. While BPEL is a 
 powerful standard for service composition, it lacks support for typical coordination constraints, 
 like synchronisation, mutual exclusion, and context-dependency. 

 In this paper we present ReoService, which is a modeling tool for coordinating business 
 processes. ReoService is based on Reo – a general framework for coordinating components in 
 distributed systems. Reo is a channel-based exogenous coordination language wherein complex 
 coordinators, called connectors, are compositionally built out of simpler ones. The simplest 
 connectors are a set of user-defined communication channels with well-defined behavior. The 
 emphasis in this model is on connectors, not on the services to connect. In this sense, 
 ReoService acts as a “glue” language that interconnects and coordinates services in a 
 distributed business process. 

9. C. Koehler, A. Lazovik, and F. Arbab. Connector Rewriting with High-Level Replacement 
Systems. In FOCLASA-07, 2007. 
Abstract: Reo is a language for coordinating autonomous components in distributed 
environments. Coordination in Reo is performed by circuit-like connectors, which are 
constructed from primitive channels with well-defined behavior. These channels are mobile, i.e. 
can be dynamically created and reconfigured at run-time. Based on these language  features, we 
introduce a high-level transformation system for Reo. We show how transformations of Reo 
connectors can be defined using the theory of high-level replacement (HLR) systems. This 
leads to a powerful notion of dynamic connector reconfiguration in Reo. Moreover, the rewrite 
rules are naturally expressed in Reo's visual syntax for connectors. 

 Applications of this framework are manifold, due to the generality of the field of coordination. 
 In this paper we provide an example from the area of Service-oriented Computing. 

 



Page 5 sur 5 
 

III -Attended Seminars, Workshops, and Conferences 
 
Please identify the name(s), date(s) and place(s) of the events in which you participated during 
your fellowship period.   
 
Lab visits: 
 
November 27-30, 2007 Tutorial on Reo Coordination Tools. Technical University of Vienna, 
(invited by Prof. Scharam Dustdar) 
 
November 20, 2007 Discussion on planning using constraint programming. Groningen, (invited 
by Prof. Marco Aiello) 
 
Talk deliveries: 
 
January 11, 2007 Using Reo for Service Coordination. INRIA Saclay, Parc Orsay Universite 
(FR) 
 
December 21, 2007 Using Reo for Service Coordination. Rijksuniversiteit, Groningen (NL) 
 
December 3-7, 2007 Managing Process Customizability and Customization: Model, Language 
and Process. In Int. Conf. on Web Information Systems Engineering (WISE-07), Nancy (FR)  
 
September, 2007 Using Reo for Service Coordination. In Int. Conf. on Service-Oriented 
Computing (ICSOC-07), Vienna 
 
April 3, 2007 Service request languages based on planning, IPA Lentedagen on Service-
oriented Computing, Heeze (NL) 

 
 
 

IV – Research Exchange Programme (12 month scheme)  
 
Please identify the name(s), date(s) and place(s) of your Research Exchanges during your 
fellowship period and detail them .   

 
 


