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I – SCIENTIFIC ACTIVITY DURING YOUR FELLOWSHIP  
During my fellowship, the main research activity focused on the continuation and 

development of technical ideas originated during the last several weeks when I was in 

University of Luxembourg - right before I moved to NTNU to start my fellowship. The 

ideas were sufficiently developed to a novel theoretical framework that implements the 

Koopman-von Neumann (KvN) theory in reproducing kernel Hilbert space (RKHS) and 

generalizes it to nonlinear systems from being restricted to classical mechanics. Because 

of the connection between RKHS and Gaussian Processes for machine learning, this new 

theoretical framework has a statistical interpretation related to Gaussian Process 

regression, and it can be applied to spatio-temporal data analysis and modeling, time-series 

prediction, nonlinear system identification and control. It also has the potential to be 

utilized for classification, patterns recognition, and anomaly detection, when combined 

with other techniques in machine learning such as subspace learning and clustering. 

  

The Koopman-von Neumann classical mechanics was originally introduced by Bernard 

Koopman and John von Neumann in 1930s as a reformulation of classical mechanics in 

terms of Hilbert space, in the same manner as formulating quantum mechanics. The idea 

was, however, not utilized and rarely investigated outside the scope of quantum physics, 

until 2004~2005 when Igor Mezić developed the modern theory of Koopman operator in 



the context of dynamical systems and functional analysis. Although it was a thorough 

theoretical investigation and further development of this idea, it differs from the original 

one of Koopman and von Neumann in that it deals with functions or observables of the 

system's state variables (and other theoretical aspects such as ergodicity), but it does not 

directly “lift” the system variables to a “state” in a manner similar to quantum mechanics 

as Koopman's and von Neumann's idea do with classical mechanics. And due to the limited 

computational power at that time, there was no numerical application of the modern 

Koopman operator theory, until in 2009 when an algorithm called Dynamic Mode 

Decomposition (DMD) was developed in fluid dynamics community for spatio-temporal 

data analysis, and was linked to the modern Koopman operator theory. However, DMD is 

effectively using the identity functions of each state variable (i.e., the most naïve and trivial 

basis functions) as the basis of the function spaces in modern Koopman operator theory. 

Hence, it is very restrictive and has numerical issues when applied both within and beyond 

the scope of fluid dynamics. Then in 2014~2015, the extended DMD algorithm (EDMD) 

was introduced and a kernel method based extension was implemented to use pre-defined 

and implicitly defined nonlinear basis functions, respectively. This was the first time when 

DMD and modern Koopman operator theory were related to techniques in machine 

learning.  

  

The theoretical framework that I developed is a direct generalization of the original idea of 

Koopman and von Neumann lifting the system's state variables to a “quantum state”-like 

quantity, from being restricted to classical mechanics to being capable of describing 

nonlinear systems as the modern Koopman operator theory did in 2004~2005. Associated 

with this novel theoretical framework is the related numerical algorithms that implement 

the theory in RKHS, and hence the theoretical framework is readily applicable in data 

sciences. Specifically, this novel theoretical framework and the related algorithms: 

(1) implement unitary time evolution of a nonlinear system in RKHS, which keeps one of 

the original features of the idea of Koopman and von Neumann, unlike the modern theory 

of Koopman operator developed in 2004~2005; 

(2) have a statistical interpretation related to Gaussian Process regression, and hence relate 

the Copenhagen interpretation of quantum mechanics to Bayesian interpretation of 

Gaussian Processes in machine learning; 

(3) provide an alternative to DMD and its extensions and variants for spatio-temporal data 

analysis and modeling, within and beyond fluid dynamics; 

(4) provide a novel methodology for time-series prediction alternative to the Kernel KMR, 

which I developed before (DOI: 10.1007/s11071-017-3764-y), and can be combined with 

and complement Kernel KMR to improve prediction performance; 

(5) provide a better technique to estimate the time derivatives from time series data than 

the modern Koopman operator theory (e.g., arXiv:1709.02003), by implementing the 

Heisenberg picture of KvN theory in RKHS that can overcome the numerical issues in 

arXiv:1709.02003, and hence can improve the performance of time derivatives estimation 

which is arguably the most crucial step in nonlinear system identification; 

(6) provide an alternative methodology to modern Koopman operator theory for nonlinear 

control using linear algorithms (e.g., DOI: 10.1016/j.automatica.2018.03.046): utilizing the 

eigenfunctions of the unitary time evolution operator of KvN theory in RKHS, both 

discrete time and continuous time control can be implemented with computational costs 

comparable to those of conventional linear techniques such as MPC and LQR. 



Besides these implemented applications in data analysis, machine learning, system 

identification and control, this novel theoretical framework and the related algorithms also 

have the potential to be further utilized for time series classification, patterns and 

dynamical scenes recognition, and anomaly detection, when combined with other 

techniques in machine learning such as subspace learning and clustering, and/or more 

advanced mathematics such as Algebraic Topology and Persistent Homology. These 

promising potentials would have been explored and investigated if I could continue the 

fellowship without resignation and early termination. 

 

II – PUBLICATION(S) DURING YOUR FELLOWSHIP 
Book chapter: 

Hua, J.-C., Noorian, F., Leong, P.H.W., Gunaratne, G.H., Gonçalves, J., 2018. Prediction 

of High-Dimensional Time Series with Exogenous Variables Using Generalized Koopman 

Operator Framework in Reproducing Kernel Hilbert Space, in: Time Series Analysis and 

Forecasting: Selected Contributions from ITISE 2017, Contributions to Statistics. Springer 

Berlin Heidelberg. ISBN: 978-3-319-96943-5. 

Abstract: We propose a novel methodology to predict high-dimensional time series with 

exogenous variables using Koopman operator framework, by assuming that the time series 

are generated by some underlying unknown dynamical system with input as exogenous 

variables. In order to do that, we first generalize the definition of the original Koopman 

operator to allow for input to the underlying dynamical system. We then obtain a 

formulation of the generalized Koopman operator in reproducing kernel Hilbert space 

(RKHS) and a new derivation of its numerical approximation methods, namely, Extended 

Dynamic Mode Decomposition (EDMD) and its kernel-based version. We also obtain a 

statistical interpretation of kernel-based EDMD developed for deterministic Koopman 

operator by utilizing the connection between RKHS and Gaussian processes regression, 

and relate it to the stochastic Koopman and Perron-Frobenius operator. In applications, we 

found that the prediction performance of this methodology is promising in forecasting real 

world high-dimensional time series with exogenous variables, including financial markets 

data. We believe that this methodology will be of interest to the community of scientists 

and engineers working on quantitative finance, econometrics, system biology, 

neurosciences, meteorology, oceanography, system identification and control, data mining, 

machine learning, computational intelligence, and many other fields involving high-

dimensional time series and spatio-temporal data. 

 

Journal paper in preparation: 

Hua, J.-C., et al., Koopman-von Neumann theory in reproducing kernel Hilbert space, 

with applications to data analysis, machine learning, nonlinear system identification and 

control. 

 

III – ATTENDED SEMINARS, WORKHOPS,         

CONFERENCES 
Planned attendance at ERNSI Workshop 2018 on System Identification to present my work 

on Koopman-von Neumann theory in RKHS, but unfortunately not undertaken due to 

severe delay of UK visa approval. 

 

 



IV – RESEARCH EXCHANGE PROGRAMME (REP) 
Research exchange was planned for a visit to INRIA to study topological data analysis but 

unfortunately not undertaken due to resignation and early termination of the fellowship. 
 


